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Computational challenges in pitch 
detection algorithms 
Abstract 
Pitch detection refers to the problem of identifying pitches in audio signals. Its application is               
evident in many fields ranging from musical context such as tuning and automatic music              
transcription to studies in psychology related to prosody, word meaning and emotional content             
of human voice. Development of pitch detection algorithms (PDAs) is still a topic of intense               
study. This thesis elaborates on pitch detection from a computational perspective and lists             
different approaches and challenges faced by each of them. It may serve as an introductory               
guide to anyone aiming to work in pitch detection. 

Introduction 
Pitch is one of the core elements in music, responsible for forming melodies and harmonies.               
There is no strict definition for pitch perception as it is not yet fully understood but it is often                   
described as the perceptual correlate of acoustic periodicity (Oxenham, 2012) or in other words              
audio frequency perceived by a trained human ear when listening to sound with periodic content              
. Technically, this corresponds to the identification of the fundamental frequency of a signal. It               1

has been demonstrated though, that human ears may perceive a pitch that corresponds to a               
fundamental frequency that is missing (Schouten, 1940) or masked by noise (Licklider 1954). In              
psychoacoustics this is termed as “missing fundamental” and although the exact mechanism of             
human pitch perception is yet unclear it is widely accepted nowadays that perceived pitch is               
largely affected by harmonic content. Harmonic content refers to the amplitude pattern of the              
frequencies that are multiple to the fundamental frequency . However, computational estimation           2

of the fundamental frequency of a signal is a topic of research. A good online demonstration of                 
this problem can be found in [Web1] and for a brief description and ongoing research see                
(Zatorre, 2005). 
 
A tentative workaround for the problem of missing fundamental is to examine all harmonics and               
infer the pitch by the energy in the partials (i.e. multiples of the fundamental frequency). Even if                 
this approach proves to be efficient for pitch identification of single tones, the complexity of the                

1 Strictly speaking, there are exceptions where pitch is perceived even in absence of periodicity, such as                 
noise filtered by comb or band-bass filters. This special case exhibits interesting properties but is not                
covered here thoroughly. However, more information can be found in (Heller, 2012; Chapter 23: “Pitch               
perception”) and (Wishart 1994; Chapter 2: “Pitch”) 
2 Harmonic content also defines timbre. Timbre is responsible for discriminating two instruments from              
each other (e.g. guitar and flute) when the same note is played. Even if the fundamental frequency is                  
identical, the sound character is different because of the timbre. 
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problem increases significantly in case of polyphony, when the signal includes more than one              
tone. The problem is easier in cases where notes do not share harmonic content (e.g. C3 and                 
A4). Harmonic content is also what defines the character of a sound or a musical instrument                
(timbre) and explains how humans can discriminate across different instruments even if they             
play the same note, that is, identical fundamental frequency. Strictly speaking, frequency            
content of higher order partials may still overlap, but in practice this happens in harmonics that                
are negligible for two reasons. First, natural instruments have a limited range of harmonics and               
second human hearing stops perceiving periodic sounds as pitches around 4 kHz (Oxenham,             
2012). However, the complexity of the problem increases when two or more notes share              
harmonic content, which occurs often in music as harmonic ratios appear to be aesthetically              
pleasing and constitute the basis of harmony. Hence, for an undefined number of notes, the               
computational problem of pitch detection brings the secondary but equally important problem of             
identifying the number of notes that are present. In case of no notes, which corresponds to                
silence or noise, a computational model should still be consistent. The observations above             
summarize the problem of polyphony. 
 

 
Figure 1. Solid line: Duration for human ear to perceive pitches according to Burck et al. (1935). Dashed 

line: According to Savart (1840) two cycles are required to detect pitch 
 
Missing fundamental and polyphony are the main challenges of pitch detection. Even if a trained               
ear might require a certain amount of repetitions to identify the fundamental frequencies of all               
the notes played, all the information is set in a definite amount of time. The time required to                  
define pitch has been under research and it varies among frequencies. Previous research has              
shown that a duration of 60 milliseconds is sufficient to perceive pitch even in low frequencies.                
(see Figure 1) and that different frequencies may require different durations to be perceived.              
This is in analogy with the loudness curves produced by Fletcher and Munson (1933) where               
perceived loudness is also frequency dependent (see Figure 2). From a computational            
perspective it is important to examine what signal duration is required to examine pitch content.               

2 



Athanasios Gotsopoulos Center for Music and Technology - Bachelor Thesis 

This may not necessarily coincide with durations required by human hearing and yet may vary               
between different approaches. Especially when referring to real-time pitch detection the analysis            
time durations should be negligible. But even if longer durations are required, pitch changes              
within the analysis interval should either be identified or, in the worst case, neglected so that                
they do not lead to misleading results. 
 
Digital representation of sound consists of samples acquired at a certain sample rate.             
Computational approaches typically work on short time windows of the signal, called buffers.             
Depending on the application and the sample rate, the size of the buffer may vary from a few                  
milliseconds to some tenths of a second. In a similar fashion as human hearing, different               
frequencies may require different times to be perceived by a computational model. This             
introduces a trade off between frequency and time resolution that is also demonstrated later in               
this thesis. 
 

 
Figure 2: Fletcher-Munson curves show the relation of loudness perception and frequency (1933). 

 
Applications of pitch detection include instrument tuning, chord identification and ultimately           
automatic music transcription (see Klapuri, 2004 for an extensive work on this topic). Ideally,              
music transcription involves transcription for each instrument separately, which in turn implies            
the distinction of multiple instruments. Such a problem is though beyond the scope of pitch               
detection as it could be considered as a separate processing step, employing techniques of              
source separation. Yet, the quality of the input signal fed to the pitch detection model may                
include non-musical content. Ideally, an efficient model should be able to ignore such content. 
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This thesis addresses the problem of pitch detection from a computational perspective. Here we              
present a variety of approaches for pitch detection listing their strengths and weaknesses. 

Methods 
In this section we cover a range of basic approaches for pitch detection. First we address                
methods in time domain, then we move to frequency domain approaches and last we discuss               
about machine learning methods. We apply the methods in a simple melody under different              
parameters and examine their strengths and weaknesses. The algorithms were implemented in            
MATLAB (MATLAB 2015b, The MathWorks, Inc., Natick, Massachusetts, United States).  

Zero-crossing rate 
The zero-crossing approach detects the time points where the signal crosses the zero value. It               
is a very simple and fast approach that works well when other frequencies are absent. However                
this is rarely the case. The zero-crossing rate can be simply estimated by multiplying a signal                
with a shifted version of itself by one sample. In time points where the product is negative, the                  
signal crossed from a positive value to a negative (or vice versa) and thus the signal crossed                 
zero. Since the method detects both changes, from positive to negative and negative to positive,               
it corresponds to half period of the signal. In Figure 3, an example is presented with an A4                  
played with virtual piano (SuperQuartet by Edirol) which corresponds to 440Hz.          

 
Figure 3: Zero-crossing point of an A4 piano sample. Original sample is shown in black, a shifted version 

by 1 sample is shown in red and their product with a dashed curve.  
 
Zero-crossing points are detected at distances that correspond to half cycle of the detected              
frequency. Four zero crossing points were detected within the buffer in Figure 3. We observe               
that frequencies corresponding to positive parts (between a negative-to-positive crossing point           
and a positive-to-negative) crossing point are higher than the other ones. This is probably due to                
same offset triggered by some very low frequency component (or even a DC offset) and that is                 
the main drawback of the zero-crossing technique. The average detected frequency in this             
example is 449.87Hz. Even if averaging produces efficient enough results, in case of polyphony              
such an averaging is not feasible. 

4 



Athanasios Gotsopoulos Center for Music and Technology - Bachelor Thesis 

Autocorrelation 
Autocorrelation is intuitively explained as the correlation of a signal with a temporally shifted 
version of itself. Correlation may be any type of similarity measure between. Simple correlation 
can be formulated as following 

(τ) (t)x(t )r = ∑
n

t=0
x − τ Eq. (1) 

Strictly speaking, the most popular similarity measure is Pearson correlation that relates to the              
equation above when the mean of the signals has been removed and they have been divided by                 
their standard deviation, or in other words, when the signals are normalized. Since pitched              
sounds are periodic signals, their autocorrelation is high when the they are shifted for a number                
of samples that approximates their period. An example is shown in Figure 4. 

 
Figure 4: (a): A window of 512 samples from an A4 piano note and a shifted version by 103 samples. (b): 

same as subfigure a but with a Hanning window applied in both signals, (c): result when repeating the 
autocorrelation process for sample lengths that correspond to frequencies from 1 to 4000 Hz 

 
There are a few observations that can be made by analyzing Figure 4. Subfigure a shows a                 
part of a signal (A4 in piano) and its shifted version for 103 samples which corresponds                
approximately to 430 Hz (buffer size: 512 samples - Sampling frequency: 44.1kHz). In this case               
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shifting was applied within the same buffer (circular shifting) and this may introduce             
discontinuities (indicated by the vertical line in Figure 4a). In such cases, to avoid the effect                
introduced by the sharp windowing of the signal, smoother window functions have been             
proposed such as hanning window. The hanning window is shown in Figure 4b (dashed line)               
and element-wise multiplication has been applied between the two signals and the hanning             
window.  
 
The correlation for the two signals in each case is shown in Figure 4c. The result exhibits a                  
rippling behavior with the highest peak around 440 Hz, where the actual note is. Autocorrelation               
is often called quasi-periodic as it exhibits a periodic-like behavior (Huang et al., 2001; figure               
6.32). Then, a continuous increase is observed as well a stepping effect. The continuous              
increase happens as increasing frequencies correspond to very low period, which in turn             
requires minor shifting of the signal. This leads to an effect like comparing the signal to itself,                 
hence autocorrelation is then driven mainly by the lower frequency components of the signal              
even if there no higher frequencies involved. The stepping effect that is observed is an effect of                 
the sampling frequency. For example, in a sampling frequency of 44.1kHz, frequency 440 Hz              
corresponds to 100.22 samples, 441 Hz to 100 samples and 442Hz to 99.77 samples. Since the                
number of samples for the shifting has to be an integer, the signal will be shifted for the same                   
amount of samples for all of these frequencies, until frequency 444 which corresponds to a               
99.32 samples, rounded to 99. This effect increases with the frequency upon study, but              
decreases when the sampling frequency is increased. 
 
Autocorrelation can be problematic also in the low frequencies (i.e. long periods) so a slightly               
different equation that penalizes low frequencies is often used to avoid this problem (Huang et               
al., 2001; Equation 6.159 - “empirical correlation”).  

Multiple autocorrelation 
Real-time signal processing is typically applied in a buffer of predefined size. Simple             
autocorrelation approach performs circular shifting only once. However it is possible to perform             
circular shifting more than once and then correlation can be calculated in each pair of these                
smaller samples. It is expected that this approach is more robust since the existence of each                
frequency is tested a few times.  

Frequency based approaches 
Since PDAs aim to identify the fundamental frequency (or fundamental frequencies) of a             
melody, it is common to perform analysis in the frequency domain. This is typically done by                
transforming the signal in the frequency domain using Fourier Transform. The Fourier transform             
in frequency  for a continuous signal  is calculated as following:f x  

(f ) (t)e dtX = ∫
+∞

−∞
x −i2πf t Eq. (2) 

This equation can be simplified using Euler’s formula that provides the relationship between             
complex exponential functions and trigonometric functions:  
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osx isinxe−ix = c −  Eq. (3) 
Using Euler’s formula the Fourier transform formula becomes: 

(f ) (t)(cos(2πf t) sin(2πf t)))dt (t)cos(2πf t)dt (t)sin(2πf t))dtX = ∫
+∞

−∞
x − i = ∫

+∞

−∞
x − i ∫

+∞

−∞
x  

 
The last equation shows that Fourier transform in practice measures the similarity of a signal to                
sine and cosine waves of a given frequency. The formulation shows that the frequency domain               
version is a complex number where the real part corresponds to the multiplication of the signal                
with a cosine wave of a frequency under analysis and the imaginary part corresponds to the         f         
multiplication of the signal with a sine wave of the same frequency. Intuitively it is explained as                 
the resonance of the signal in a given frequency.  
 
The most popular algorithm for transforming a signal to frequency domain is the Fast Fourier               
Transform (FFT) due to its computational speed. However, its main drawback is that the              
analyzed frequency centers are dependent on the buffer size and the sampling frequency and              
linearly equally spaced. Therefore it does not provide direct information on specific frequencies             
but rather on frequency bins spaced as 

,N
Fs  

where is the sampling frequency and is the size of the buffer, indicating that for the sF       N            
frequency resolution drops for higher sampling frequency and and for lower number of samples              
in the buffer. 
 
Alternatively, the signal can be analyzed at desired frequencies by examining the signal’s             
product with sine and cosine waves of these frequencies as mentioned above. 

Fourier analysis 

To examine if a signal contains a certain frequency (e.g. 440Hz) , a sine and a cosine wave can                   
be generated at this frequency and then calculate the product of the two multiplications. If the                
signal contains a component of that frequency the product should be high, given that the buffer                
size is large enough to detect this resonance. Similarly, the frequency domain version of the               
signal can be estimated by testing multiple frequencies. This can be repeated, for example, for               
all the notes within a given range of notes (e.g. all the notes of the piano). An example of the                    
procedure is presented in Figure 5.  

 
A window of 512 samples is shown in (a) from a piano playing A4 (440Hz). A sine wave and a                    
cosine wave (red and blue dashed lines respectively) of 440 Hz are overlaid. The cosine wave                
appears to be very similar to the actual signal. The sine wave appears to be out of phase. Sine                   
waves and cosine waves are orthogonal signals. This means in practice that they are              
independent to each other and manage to catch complementary information. This is also             
demonstrated in Figure 5, where the cosine is synchronized better with the piano signal (Figure               
5a) and hence carries more relevant information (Figure 5b). Orthogonality is mathematically            
expressed as 
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 sin(x)cos(x) dx     = 0  
 

This practically means that if one of the two (sine or cosine) fails to catch periodicity because it                  
is out of phase, then the other will catch that information. It is also important to note that in case                    
of negative similarity where signals are similar but with an opposite sign, a negative high               
similarity which is turned positive when the power spectrum is calculated. The power spectrum              
is simply the root square of the squared values.  

Figure 5: Fourier analysis for a window of 512 samples of an A4 piano. (a) the signal, a sine wave and a 
cosine wave of 440 Hz. (b): similarity of the sine wave and a cosine wave for each frequency from 1 to 

5000 Hz. (c) Power spectrum for frequencies from 1 to 5000 Hz, with (red) and without (red) application of 
Hanning window 

In Figure 5b the similarity of the sine and the cosine for each frequency from 0 to 5000 is                   
shown before the calculation of the power spectrum. Hence, negative values are shown (around              
400 Hz for sine wave similarity). Most of the correct information is now tracked by the cosine                 
waves but this is purely a coincidence in this case as it only depends on the phase of the signal.                    
We also observe a number of ripples around the peak, this happens due to the windowing                
effect, in a similar fashion as in autocorrelation analysis. In Figure 5c we observe the difference                
of the power spectrum with and without the application of hanning window to the signal.               
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Hanning window suppresses the ripples. Its drawback though is that it also reduces and widens               3

the actual peaks of the signal, since some information from the edges are lost. The peaks are                 
not very sharp in this example. Peaks become sharper when larger buffer size is used. As                
mentioned also earlier, this is the frequency-time trade-off where better time accuracy causes             
lower frequency resolution and vice versa. Peaks are also present for higher partials, multiples              
of the 440Hz. This reveals the limitation of the simple frequency analysis directly on the fourier                
transform since pure sine waves are rarely encountered in music. Alternatively, harmonics (i.e.             
multiples of the frequency under analysis) can be also examined and taken into account.  

Harmonic Product Spectrum analysis  

Since timbre is generated by different amplitudes of harmonics, instead of analyzing a signal              
with a single sine wave, it can be analyzed by a second signal that contains more than one                  
frequency. More specifically a signal can be generated for a specific frequency that also              
contains a number of harmonics, or in other words calculate the Harmonic Product Spectrum              
(HPS). This is mathematically expressed as 

,(f )Y = ∏
R

r=1
X(f )| |  

 
where denotes the index of the harmonic. An example of this approach can be found in r                 
[Web4]. Since the timbre is unknown for a random musical source, the amplitude of harmonics               
have to be defined a priori. However a weighted product can be calculated in case of a source                  
with known timbre. A serious drawback of this approach relies in polyphony; if harmonic notes               
also exist in the musical content, such as octaves and fifths, they might be mistakenly estimated                
as content of the lowest note. 

Machine Learning & Neural Networks 
As mentioned in the introduction, pitch detection is a challenging computational problem since a              
trained human ear can approximately identify the notes in a given melody, independently of the               
source’s timbre. This suggests that the problem can be solved under certain conditions but it is                
rather unclear what these conditions are. For such complex problems that need to be solved but                
they can not be mathematically formulated precisely, it is common to apply machine learning              
methods that try to find solutions to complex problems through optimization procedures. If these              
methods work well they not only succeed in solving the problem but also provide insight on how                 
this was achieved. Artificial neural networks (ANNs) constitute a field of machine learning that              
has lately displayed remarkable performance in complex tasks in several fields such as image              
classification (Ciresan et al., 2012; Bach et al., 2015), image enhancement and generation             
(Gatys et al., 2015; Zhu et al., 2017), clinical diagnosis (Amato et al., 2013), singing voice                
classification (see [Web2]) and audio generation (Bengio et al. 2016; Oord et al., 2017). Often               
shortened to neural networks (NNs), their original concept was to model or imitate neuronal              
activity in human brain; a large number of neurons interacting with each other and propagating               

3 Hanning window or Hann window: a window function often used to avoid aliasing in the frequency 
domain. Although highly similar to Hamming window, a different window function, they are not identical. 
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information in several layers. In a similar fashion as the human brain neurons that either fire or                 
not, neurons in ANNs are typically modeled in a digital fashion with output 0 or 1, as well as the                    
effect of training; neuron connections are adjusted according to previous knowledge in order to              
efficiently process new information. Since their conception, ANNs have developed and the            
aforementioned properties do not always hold, depending on the task and model.            
Computationally, the efficiency of NNs, can be summarized to their ability to detect complex              
relationships and features that describe the input data efficiently. 
 
In the most common neural network structure, called Multilayer Perceptrons (MLP), the models             
consist of an input layer, an output layer and optionally a number of hidden layers in between.                 
The input data is fed through the input layer and propagates towards the output layer while                
being subjected to a number of operations. These operations are typically multiplications with             
the neurons’ weights and nonlinear functions in the output of each layer. 
 
Neural networks are functional after proper training. Training is the most time-consuming            
process and requires several implementation decisions such as the type of input data, the type               
of output, the training set, its structure and a number of parameters that affect its optimization.                
However, once trained, a neural network is very fast. 
 
In general, machine learning can be divided into two categories: unsupervised learning and             
supervised learning. Unsupervised learning refers to techniques that analyze data without any            
prior or extra knowledge regarding the data. A simple example of unsupervised learning is              
clustering, where the task is to divide the data into two or more categories without any                
knowledge on how the data were generated. On the other hand, supervised learning, refers to               
tasks where more knowledge is provided such as labels and tags for the data. In case of pitch                  
detection, the data consist of sounds and their corresponding note names; this forms a              
classification problem, which is a subcategory of supervised learning. Although there are both             
unsupervised and supervised approaches for Neural Networks, here we use supervised models            
to classify the pitch of sound. 

Types of input data 

The simplest type of input data for a neural network addressing pitch detection would be to feed                 
directly the samples. However, the inputs have to be consistent from sample to sample whereas               
temporal information is not, since for example the 2nd time point of a buffer does not have                 
necessarily anything in common with the 2nd time point of the next buffer. This means that they                 
they do not share the same information. Alternatively, frequency information of each buffer can              
be fed since each input will then correspond to a specific frequency. For example the power                
spectrum of the FFT is a meaningful input. However, many frequency bins of FFT fall out of the                  
frequency range responsible for pitch and there they are redundant. An alternative approach is              
to use as inputs, information from the frequencies corresponding to the notes under analysis              
and a certain number of harmonics for each of them. Although conceptually phase is not               
expected to play any role in pitch perception, phase information is used to improve the               
frequency/time resolution through techniques like phase unwrapping (see for example [Web5]). 
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Training of the Neural Network 

In machine learning, the efficiency of the model emerges from proper training that adjusts the               
model’s parameters to suitable values. In the case of neural network, these parameters are the               
weights of the connections between neurons. A suitable training data set is required that is a                
sufficiently large number of examples with pre-known results. In case of pitch detection, a large               
number of sounds with known labels (i.e. pitches) is required. The process of obtaining a               
sufficiently large number of real examples is rather cumbersome so simulations were used here              
to generate sounds with random timbres and known pitches. The sounds were obtained by              
generating sounds with length equal to the buffer size and random harmonic amplitudes. We              
generated 1000 sounds for each note under study. It is necessary to produce an equal number                
of examples for each pitch since otherwise the model may successfully guess just by choosing               
the most common example even if no features are learnt. Without getting into further              
mathematical details, since they are beyond the scope of the thesis, the settings of the network                
are provided in brief as follows: 
 

● Number and size of layers: Two hidden layers. The size of the first equals the number                
of harmonics and notes and analysis (e.g. for three octaves and 10 harmonics it would               
be 36x10=360 nodes in the first hidden layer) and the size of the second hidden layer                
was equal to the number of notes under analysis. 

● Optimization algorithm: stochastic gradient descent  
● Minibatch size: 50 samples 
● Learning rate: 0.01 
● Activation function: Rectifiers in the hidden layers and Softmax in the output layer. 
● Error function: Least Absolute Error 

Results 
In this section we provide simple demonstrations of the algorithms in close to real applications.               
We show how they behave in a simple monophonic melody playing a C major scale downwards                
from C3 to C2 , in quarters at 180BPM. This results in 8 notes, with a duration of 0.33 seconds                    
for each one. First we use simple sine waves for the melody and then a virtual piano (Edirol                  
Super Quartet) for the exact same melody. We analyzed wave files with sample rate of 44.1kHz. 
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Zero crossing results 

 
Figure 6: Zero crossing results for different buffer sizes for simple sine wave melody (left column) and 

simple piano melody (right column). Simple sine waves can be detected efficiently using zero crossing but 
its efficiency drops significantly in more complex sounds. In small buffer sizes there is large inaccuracy in 
the detected note, while in larger buffer sizes, there are overlapping areas close to the note transitions. 

The piano melody fails to be detected. The first harmonic of the first note (i.e. C4) is detected instead.  As 
it will be shown later, in the fourier section, the first harmonic of the piano happens to be louder than the 

fundamental. Later notes complicate sound and zero crossing does not perform well although it maintains 
a downward trend. 
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Autocorrelation results

 
Figure 7: Autocorrelation results for different buffer sizes for simple sine wave melody (left column) and 
simple piano melody (right column). The results are similar to the demonstration in Figure 4, showing a 

high trend in the higher frequencies (i.e. higher notes) as well as rippling behavior in the lower 
frequencies. Again, too small buffer or too large buffer sizes hinder the results, by losing frequency and 

temporal accuracy respectively.  In this case, the precision is better in lower frequencies, as higher notes 
have smoother patterns over different notes. 
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Multiple autocorrelation results 

 
Figure 8: Multiple autocorrelation results for different buffer sizes for simple sine wave melody (left 

column) and simple piano melody (right column). Five autocorrelation samples were collected in this case 
(the sample was shifted circularly 5 times and the average correlation was calculated). The results are 

less noisy than simple autocorrelation results but the lower frequencies keep being present. 
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Fourier analysis results 

 
Figure 9: Simple Fourier analysis results for different buffer sizes for simple sine wave melody (left 

column) and simple piano melody (right column). Low buffer sizes lack frequency accuracy, large buffer 
sizes hinder temporal resolution. This approach works perfect for the sine wave melody. In the piano 

melody it detects all the harmonics. It is important to note that this example in practice is identical to what 
is often called spectrogram. 
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Harmonic Product Spectrum analysis results 

Figure 10: Harmonic Product Spectrum analysis results for different buffer sizes for simple sine wave 
melody (left column) and simple piano melody (right column). This sums in practice the energy of each 

note and its 5 harmonics. In the case of sine wave melody, lower notes seem active as they are 
subharmonics of the actual note present. Again, low buffer sizes lack frequency accuracy, large buffer 

sizes hinder temporal resolution.  
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Neural Network results 

Figure 11: Neural network results for simple sine wave melody (left) and simple piano melody (right). 
Only one buffer size is demonstrated since training and testing of neural networks is laborious. 

Surprisingly, the neural network fails to detect the simple sine wave melody but detects the piano melody 
better than any other method. A tentative explanation for this result is that the training set consisted of 

spectrally complex sounds only. This implies that the generated training set was not descriptive enough to 
also cover simple cases, like sine waves. 

Discussion 

Monophonic versus polyphonic pitch detection 
While monophonic pitch detection might seem as a subcase of polyphonic pitch detection, this              
is not always the case. In many implementations, under the assumption of only one existing               
pitch, methods may rely on minimizing some error function and locating the minimum. Even if               
they perform well for single pitch detection (see YIN pitch detection algorithm; de Cheveigné &               
Kawahara, 2002), generalization to polyphony may be intractable and require fundamental           
changes in the algorithm. The authors claim that the extension to music and polyphony is               
feasible by applying comb filters to remove irrelevant but periodic elements, but they state that               
this works well “except in the unlucky event that the periods are in certain simple ratios” which                 
reflects exactly musical harmonies. 
Other methods, such as zero-crossing, improve their robustness by averaging over a number of              
noisy observations. As shown also in Figure 3, a close to real estimation is achieved by                
averaging four zero-crossing points. However averaging results to a single number that ignores             
the possibility of more than one note being present. 

Timbre and pre-defined frequency maps 
In Figure 5c, the fourier analysis of an A4 piano note revealed amplitudes also in higher partials                 
than the fundamental. This specific pattern of amplitudes of each harmonic defines the             
character of the instrument often termed as timbre. For example if a violin would play an A4, the                  
fundamental (at 440Hz) should appear again but the peak amplitudes should be different. By              
studying these frequency patterns repeatedly and among different instruments, one may derive            
frequency maps that provide information for each instrument. This can assist when the sound              
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source is known, for example a piano recording and then perform weighting in a similar fashion                
as the harmonic series sine detection. Knowing the source can provide even more information,              
such as the frequency range of an instrument so that any content out of this range can be safely                   
filtered or discarded. 

Output of PDAs 
Each PDA makes decisions regarding pitches through a specific measure. Optimally, related            
pitches yield high numbers while non-existant pitches yields low or zero numbers. In our              
implementation of zero crossing, the algorithm output reflects the number of times a frequency              
close to a certain note was detected. Using the example of Figure 3, durations that               
corresponds to 380.2, 393.8 and twice 512.8 Hz. These numbers correspond to detecting one              
F#4, one G4 and one C4. This also shows the lack of accuracy of the zero-crossing algorithm.                 
In autocorrelation algorithms, the output is a number between -1 to 1. Values close to -1 imply                 
negative correlation or in other words high similarity but phase difference of . Values close to            π     
1 show direct high similarity. Values close to 0 show no relation between the two signals under                 
comparison. Frequency based approaches have the benefit of quantifying the energy of each             
spectral component. In other words, the higher amplitude a sinusoid has, the higher value the               
output will get. It is a desirable property of a PDA to be able to quantify the amplitude of a                    
signal, e.g. tell the volume of a piano note detected. This is not possible with zero-crossing and                 
autocorrelation methods. An alternative is to keep track of the local volume of the signal (buffer)                
through a low pass filter (i.e. envelope) in order to quantify the volume of the detected notes, but                  
this approach does not allow volume quantification of multiple notes at the same time. 
 
The output of the neural network varies, depending on the implementation of the network.              
Typically, neural network outputs range from 0 to 1, indicating the probability of an output to be                 
true.  

Preprocessing 
Certain preprocessing steps have shown to improve results of PDAs. We demonstrated the             
benefits of windowing functions, such as Hann window, which help in removing edge effects.              
Filtering of the source signal is also a common process before applying PDAs. Removing              
spectral components that are out of the analysis frequency range may simplify the problem.              
Typically, band-pass filters are applied to remove spectral components that do not convey pitch              
information. In certain methods, such as zero-crossing method, band-pass filtering is extremely            
crucial as low or high components may cause zero-crossings that are not related to periodicity. 
 
Preprocessing steps deriving from psychoacoustics and neuroscience of hearing also exist.           
These mostly take into account properties of the ear canal, cochlea and basilar membrane. For               
example it has been shown that hair cells in the human ear perform a half-wave rectification and                 
hence pitch perception relies mainly on the positive part of the signal (Pulkki & Karjalainen,               
2015; section 10.1.9). In a similar fashion various approaches perform band-pass filters similar             
to the ones that human ears perform (critical bands; see Fletcher, 1940). There have also been                
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attempts to approximate the problem of pitch detection through simulations of the cochlea and              
human hearing system in general (de Cheveigné, 2005). 

State of the Art & future directions 
Current state-of-the-art approaches for pitch detection are basically sophisticated extensions          
and combinations of the approaches mentioned in this thesis. An extension of the zero-crossing              
method that has shown remarkable results is PLL-tracker (Zölzer et al., 2012). The YIN              
algorithm (de Cheveigné & Kawahara, 2002) is an autocorrelation based method that has             
demonstrated notable results. An approach that incorporates both Harmonic product spectrum           
and neural networks has been presented by Guerrero-Turrubiates et al. (2014). A            
frequency-domain approach that also incorporates phase information has been introduced by           
Brown & Puckette (1993). Since neural networks have proven to be very efficient in a wide                
range of applications including audio with impressive results (Bengio et al., 2016; Oord et al.,               
2016), it is reasonable to attempt to use them for pitch detection. However, there are certain                
implementation decisions that must be taken, ranging from the type of input, the structure and               
the size of the network and the interpretation of the output. A Recurrent Neural Network (RNN)                
approach for pitch detection in piano has been recently introduced (Bock & Schedl, 2012) as               
well as a machine learning based toolbox in Python for music information retrieval             
(Korzeniowski et al., 2016). 
 
A certain amount of research in pitch perception focuses on its neuroscientific perspective. This              
is a top-down approach aiming to understand each step in the process of human pitch               
perception. On the other hand, machine learning algorithms seem to be quite the opposite;              
building complex models that can effectively solve the problem and then study the model to               
unveil its mechanism. The second approach does not guarantee though that an efficient             
approach would resemble human hearing, but in musical applications this is not necessary. 

Limitations 
Since the purpose of this thesis is mainly demonstrative of the approaches and challenges              
faced by computational pitch detection, there are aspects that are not covered as well as               
aspects that are not optimized. The effect of bit depth and sample rate in the analysis are not                  
shown here, neither the effects of various filters. However the code is available for download               
and further analysis. 
In terms of neural networks, convolutional structures have be shown to allow signal input in the                
time domain (Su et al., 2016) and recurrent neural networks have shown to exploit previous time                
points to infer the current pitch (Bock et al., 2012). Furthermore, softmax as an output activation                
function may be limiting since it favors one output and hence is not optimal for polyphonic                
outputs. 

Searching for a training set 
A major implementation decision in supervised machine learning algorithms is what data to use              
as training data set. Data collection can be a tedious process, especially considering the              
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amount of samples required to train complex relations. Therefore, data collection is often             
performed in an automated manner, such as using web crawling. Web crawlers are programs              
that search the web and analyze data they find. Depending on the application, the web crawler                
can collect text, images or detect links that lead to sound files. Labeling of large amounts of data                  
is also laborious, website often include tags related to the files. Online sound platforms such as                
freesound.org provide sounds for downloading, accompanied by related tags. 
 
Another option is to use sound libraries that are used by synthesizers and samplers. In certain                
libraries, there is enormous detail in the data acquisition such as collecting sounds of all notes                
and in many different velocities. 
 
Yet another way would be to naturally produce a training set while playing music through MIDI                
notes and audio output. This should be rather straightforward to implement but requires further              
work that is beyond the scope of this thesis. 

Conclusions 
We summarized the main challenges faced when dealing with pitch detection algorithms. A few 
fundamental pitch detections were implemented and tested in simple cases. A neural network 
implementation was also demonstrated using a simulated data set from scratch, showing 
interesting properties. Aims for this thesis were: 

● To provide an introductory guide for anyone who wishes to elaborate further on pitch 
detection. 

● To experiment with different pitch detection algorithms and underline their strengths and 
weaknesses. 

● To train and test a machine learning algorithm without any prior sound library. 
● To implement algorithms that will be publicly available. The code for the thesis can be 

found here: https://github.com/gostopa1/PDA 
 
Based on the aforementioned goals, this thesis has covered a wide range of problems related to 
pitch detection. Further elaboration on pitch detection could easily be a topic for a whole 
research plan of a graduate student and hence beyond the scope of a Bachelor’s thesis. 
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